Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 10: 1166155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37081852

RESUMO

Accelerated activation of the human plasminogen zymogen (hPg) to two-chain active plasmin (hPm) is achieved following conformational changes induced by ligand-binding at the lysine-binding sites (LBSs) in four of the five hPg kringle domains. In this manner, pattern D skin-trophic strains of Group A streptococci (GAS), through the expression of surface plasminogen-binding M-protein (PAM), immobilize surface hPg, thereby enabling rapid hPg activation by GAS-secreted streptokinase (SK). Consequently, GAS enhances virulence by digesting extracellular and tight cellular junctional barriers using hPm activity. Many studies have demonstrated the singular importance of the kringle-2 domain of hPg (K2hPg) to PAM-binding using hPg fragments. Recently, we showed, using full-length hPg, that K2hPg is critical for PAM binding. However, these studies did not eliminate any modulatory effects of the non-K2hPg LBS on this interaction. Moreover, we sought to establish the significance of the intramolecular interaction between Asp219 of the LBS of K2hPg and its serine protease domain binding partner, Lys708, to conformational changes in hPg. In the current study, selective inactivation of the LBS of K1hPg, K4hPg, and K5hPg revealed that the LBS of these kringle domains are dispensable for hPg binding to PAM. However, the attendant conformational change upon inactivation of K4hPg LBS increased the affinity of hPg for PAM by an order of magnitude. This finding suggests that the native hPg conformation encloses PAM-binding exosites or sterically hinders access to K2hPg. While simultaneous inactivation of the LBS of K1hPg, K4hPg, and K5hPg inhibited hPg/SK association alongside hPg activation, the replacement of Lys708 generated a slight conformational change that optimally accelerated hPg activation. Thus, we accentuate disparate functions of hPg LBS and conclude, using intact proteins, that K2hPg plays a central role in regulating hPg activation.

2.
J Thromb Haemost ; 21(6): 1630-1635, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36914052

RESUMO

BACKGROUND: Streptococcus pyogenes (GAS) is a human bacterial pathogen that generates various mild to severe diseases. Worldwide, there are approximately 700 million cases of GAS infections per year. In some strains of GAS, the surface-resident M-protein, plasminogen-binding group A streptococcal M-protein (PAM), binds directly to human host plasminogen (hPg), where it is activated to plasmin through a mechanism involving a Pg/bacterial streptokinase (SK) complex as well as endogenous activators. Binding to Pg and its activation are dictated by selected sequences within the human host Pg protein, making it difficult to generate animal models to study this pathogen. OBJECTIVES: To develop a murine model for studying GAS infection by minimally modifying mouse Pg to enhance the affinity to bacterial PAM and sensitivity to GAS-derived SK. METHODS: We used a targeting vector that contained a mouse albumin-promoter and mouse/human hybrid plasminogen cDNA targeted to the Rosa26 locus. Characterization of the mouse strain consisted of both gross and histological techniques and determination of the effects of the modified Pg protein through surface plasmon resonance measurements, Pg activation analyses, and mouse survival post-GAS infection. RESULTS: We generated a mouse line expressing a chimeric Pg protein consisting of 2 amino acid substitutions in the heavy chain of Pg and a complete replacement of the mouse Pg light chain with the human Pg light chain. CONCLUSION: This protein demonstrated an enhanced affinity for bacterial PAM and sensitivity to activation by the Pg-SK complex, making the murine host susceptible to the pathogenic effects of GAS.


Assuntos
Streptococcus pyogenes , Estreptoquinase , Animais , Camundongos , Humanos , Estreptoquinase/genética , Estreptoquinase/química , Estreptoquinase/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Plasminogênio/química , Ligação Proteica
3.
Biochemistry ; 62(3): 735-746, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701429

RESUMO

Cellular plasminogen (Pg) receptors (PgRs) are utilized to recruit Pg; stimulate its activation to the serine protease, plasmin (Pm); and sterically protect the surface Pm from inactivation by host inhibitors. One such PgR is the moonlighting enzyme, enolase, some of which leaves the cytoplasm and resides at the cell surface to potentially function as a PgR. Since microbes employ conscription of host Pg by PgRs as one virulence mechanism, we explored the structural basis of the ability of Streptococcus pyogenes enolase (Sen) to function in this manner. Employing single-particle cryo-electron microscopy (cryo-EM), recombinant Sen from S. pyogenes was modeled at 2.6 Å as a stable symmetrical doughnut-shaped homooctamer with point group 422 (D4) symmetry, with a monomeric subunit molecular weight of ∼49 kDa. Binding sites for hPg were reported in other studies to include an internal K252,255 and the COOH-terminal K434,435 residues of Sen. However, in native Sen, the latter are buried within the minor interfaces of the octamer and do not function as a Pg-binding epitope. Whereas Sen and hPg do not interact in solution, when Sen is bound to a surface, hPg interacts with Sen independently of K252,255,434,435. PgRs devoid of COOH-terminal lysine utilize lysine isosteres comprising a basic residue, "i", and an anionic residue at "i + 3" around one turn of an α-helix. We highlight a number of surface-exposed potential hPg-binding lysine isosteres and further conclude that while the octameric structure of Sen is critical for hPg binding, disruption of this octamer without dissociation exposes hPg-binding epitopes.


Assuntos
Proteínas de Bactérias , Plasminogênio , Plasminogênio/química , Plasminogênio/metabolismo , Proteínas de Bactérias/química , Streptococcus pyogenes , Microscopia Crioeletrônica , Ligação Proteica , Fosfopiruvato Hidratase/metabolismo , Lisina/química , Proteínas de Transporte/metabolismo , Serina Proteases/metabolismo
4.
Front Microbiol ; 13: 905670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685926

RESUMO

The proteolytic activity of human plasmin (hPm) is utilized by various cells to provide a surface protease that increases the potential of cells to migrate and disseminate. Skin-trophic Pattern D strains of Streptococcus pyogenes (GAS), e.g., GAS isolate AP53, contain a surface M-protein (PAM) that directly and strongly interacts (Kd ~ 1 nM) with human host plasminogen (hPg), after which it is activated to hPm by a specific coinherited bacterial activator, streptokinase (SK2b), or by host activators. Another ubiquitous class of hPg binding proteins on GAS cells includes "moonlighting" proteins, such as the glycolytic enzyme, enolase (Sen). However, the importance of Sen in hPg acquisition, especially when PAM is present, has not been fully developed. Sen forms a complex with hPg on different surfaces, but not in solution. Isogenic AP53 cells with a targeted deletion of PAM do not bind hPg, but the surface expression of Sen is also greatly diminished upon deletion of the PAM gene, thus confounding this approach for defining the role of Sen. However, cells with point deletions in PAM that negate hPg binding, but fully express PAM and Sen, show that hPg binds weakly to Sen on GAS cells. Despite this, Sen does not stimulate hPg activation by SK2b, but does stimulate tissue-type plasminogen activator-catalyzed activation of hPg. These data demonstrate that PAM plays the dominant role as a functional hPg receptor in GAS cells that also contain surface enolase.

5.
J Biol Chem ; 298(6): 101940, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430253

RESUMO

Trafficking of M-protein (Mprt) from the cytosol of Group A Streptococcus pyogenes (GAS) occurs via Sec translocase membrane channels that associate with Sortase A (SrtA), an enzyme that catalyzes cleavage of Mprt at the proximal C-terminal [-LPST355∗GEAA-] motif and subsequent transpeptidation of the Mprt-containing product to the cell wall (CW). These steps facilitate stable exposure of the N-terminus of Mprt to the extracellular milieu where it interacts with ligands. Previously, we found that inactivation of SrtA in GAS cells eliminated Mprt CW transpeptidation but effected little reduction in its cell surface exposure, indicating that the C-terminus of Mprt retained in the cytoplasmic membrane (CM) extends its N-terminus to the cell surface. Herein, we assessed the effects of mutating the Thr355 residue in the WT SrtA consensus sequence (LPST355∗GEAA-) in a specific Mprt, PAM. In vitro, we found that synthetic peptides with mutations (LPSX355GEAA) in the SrtA cleavage site displayed slower cleavage activities with rSrtA than the WT peptide. Aromatic residues at X had the lowest activities. Nonetheless, PAM/[Y355G] still transpeptidated the CW in vivo. However, when using isolated CMs from srtA-inactivated GAS cells, rapid cleavage of PAM/[LPSY355GEAA] occurred at E357∗ but transpeptidation did not take place. These results show that another CM-resident enzyme nonproductively cleaved PAM/[LPSYGE357∗AA]. However, SrtA associated with the translocon channel in vivo cleaved and transpeptidated PAM/[LPSX355∗GEAA] variants. These CM features allow diverse cleavage site variants to covalently attach to the CW despite the presence of other potent nonproductive CM proteases.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Parede Celular , Streptococcus pyogenes , Aminoaciltransferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Parede Celular/metabolismo , Cisteína Endopeptidases , Mutação , Streptococcus pyogenes/classificação , Streptococcus pyogenes/enzimologia
6.
Microbiologyopen ; 10(6): e1252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34964287

RESUMO

The direct binding of human plasminogen (hPg), via its kringle-2 domain (K2hPg ), to streptococcal M-protein (PAM), largely contributes to the pathogenesis of Pattern D Group A Streptococcus pyogenes (GAS). However, the mechanism of complex formation is unknown. In a system consisting of a Class II PAM from Pattern D GAS isolate NS88.2 (PAMNS88.2 ), with one K2hPg binding a-repeat in its A-domain, we employed biophysical techniques to analyze the mechanism of the K2hPg /PAMNS88.2 interaction. We show that apo-PAMNS88.2 is a coiled-coil homodimer (M.Wt. ~80 kDa) at 4°C-25°C, and is monomeric (M.Wt. ~40 kDa) at 37°C, demonstrating a temperature-dependent dissociation of PAMNS88.2 over a narrow temperature range. PAMNS88.2 displayed a single tight binding site for K2hPg at 4°C, which progressively increased at 25°C through 37°C. We isolated the K2hPg /PAMNS88.2 complexes at 4°C, 25°C, and 37°C and found molecular weights of ~50 kDa at each temperature, corresponding to a 1:1 (m:m) K2hPg /PAMNS88.2  monomer complex. hPg activation experiments by streptokinase demonstrated that the hPg/PAMNS88.2  monomer complexes are fully functional. The data show that PAM dimers dissociate into functional monomers at physiological temperatures or when presented with the active hPg module (K2hPg ) showing that PAM is a functional monomer at 37°C.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Kringles , Plasminogênio/química , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Sítios de Ligação , Humanos , Peso Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Estreptoquinase/metabolismo , Temperatura , Termodinâmica
7.
Front Cardiovasc Med ; 8: 667554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179133

RESUMO

Invasive outcomes of Group A Streptococcus (GAS) infections that involve damage to skin and other tissues are initiated when these bacteria colonize and disseminate via an open wound to gain access to blood and deeper tissues. Two critical GAS virulence factors, Plasminogen-Associated M-Protein (PAM) and streptokinase (SK), work in concert to bind and activate host human plasminogen (hPg) in order to create a localized proteolytic environment that alters wound-site architecture. Using a wound scratch assay with immortalized epithelial cells, real-time live imaging (RTLI) was used to examine dynamic effects of hPg activation by a PAM-containing skin-trophic GAS isolate (AP53R+S-) during the course of infection. RTLI of these wound models revealed that retraction of the epithelial wound required both GAS and hPg. Isogenic AP53R+S- mutants lacking SK or PAM highly attenuated the time course of retraction of the keratinocyte wound. We also found that relocalization of integrin ß1 from the membrane to the cytoplasm occurred during the wound retraction event. We devised a combined in situ-based cellular model of fibrin clot-in epithelial wound to visualize the progress of GAS pathogenesis by RTLI. Our findings showed GAS AP53R+S- hierarchically dissolved the fibrin clot prior to the retraction of keratinocyte monolayers at the leading edge of the wound. Overall, our studies reveal that localized activation of hPg by AP53R+S- via SK and PAM during infection plays a critical role in dissemination of bacteria at the wound site through both rapid dissolution of the fibrin clot and retraction of the keratinocyte wound layer.

8.
J Biol Chem ; 296: 100099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33208461

RESUMO

Virulent strains of Streptococcus pyogenes (gram-positive group A Streptococcus pyogenes [GAS]) recruit host single-chain human plasminogen (hPg) to the cell surface-where in the case of Pattern D strains of GAS, hPg binds directly to the cells through a surface receptor, plasminogen-binding group A streptococcal M-protein (PAM). The coinherited Pattern D GAS-secreted streptokinase (SK2b) then accelerates cleavage of hPg at the R561-V562 peptide bond, resulting in the disulfide-linked two-chain protease, human plasmin (hPm). hPm localizes on the bacterial surface, assisting bacterial dissemination via proteolysis of host defense proteins. Studies using isolated domains from PAM and hPg revealed that the A-domain of PAM binds to the hPg kringle-2 module (K2hPg), but how this relates to the function of the full-length proteins is unclear. Herein, we use intact proteins to show that the lysine-binding site of K2hPg is a major determinant of the activation-resistant T-conformation of hPg. The binding of PAM to the lysine-binding site of K2hPg relaxes the conformation of hPg, leading to a greatly enhanced activation rate of hPg by SK2b. Domain swapping between hPg and mouse Pg emphasizes the importance of the Pg latent heavy chain (residues 1-561) in PAM binding and shows that while SK2b binds to both hPg and mouse Pg, the activation properties of streptokinase are strictly attributed to the serine protease domain (residues 562-791) of hPg. Overall, these data show that native hPg is locked in an activation-resistant conformation that is relaxed upon its direct binding to PAM, allowing hPm to form and provide GAS cells with a proteolytic surface.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Estreptoquinase/química , Estreptoquinase/metabolismo , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Humanos , Camundongos , Ligação Proteica , Infecções Estreptocócicas/metabolismo , Virulência
9.
J Bacteriol ; 202(10)2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32123038

RESUMO

Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a ß-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Cisteína Endopeptidases/genética , Humanos , Proteínas de Membrana/genética , Ligação Proteica , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
10.
J Struct Biol ; 208(1): 18-29, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301349

RESUMO

VEK50 is a truncated peptide from a Streptococcal pyogenes surface human plasminogen (hPg) binding M-protein (PAM). VEK50 contains the full A-domain of PAM, which is responsible for its low nanomolar binding to hPg. The interaction of VEK50 with kringle 2, the PAM-binding domain in hPg (K2hPg), has been studied by high-resolution NMR spectroscopy. The data show that each VEK50 monomer in solution contains two tight binding sites for K2hPg, one each in the a1- (RH1; R17H18) and a2- (RH2; R30H31) repeats within the A-domain of VEK50. Two mutant forms of VEK50, viz., VEK50[RH1/AA] (VEK50ΔRH1) and VEK50[RH2/AA] (VEK50ΔRH2), were designed by replacing each RH with AA, thus eliminating one of the K2hPg binding sites within VEK50, and allowing separate study of each binding site. Using 13C- and 15N-labeled peptides, NMR-derived solution structures of VEK50 in its complex with K2hPg were solved. We conclude that the A-domain of PAM can accommodate two molecules of K2hPg docked within a short distance of each other, and the strength of the binding is slightly different for each site. The solution structure of the VEK50/K2hPg, complex, which is a reductionist model of the PAM/hPg complex, provides insights for the binding mechanism of PAM to a host protein, a process that is critical to S. pyogenes virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Estrutura Secundária de Proteína
11.
J Mol Biol ; 431(19): 3804-3813, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31295457

RESUMO

Plasminogen (Plg)-binding M protein (PAM) is a group A streptococcal cell surface receptor that is crucial for bacterial virulence. Previous studies revealed that, by binding to the kringle 2 (KR2) domain of host Plg, the pathogen attains a proteolytic microenvironment on the cell surface that facilitates its dissemination from the primary infection site. Each of the PAM molecules in their dimeric assembly consists of two Plg binding motifs (called the a1 and a2 repeats). To date, the molecular interactions between the a1 repeat and KR2 have been structurally characterized, whereas the role of the a2 repeat is less well defined. Here, we report the 1.7-Å x-ray crystal structure of KR2 in complex with a monomeric PAM peptide that contains both the a1 and a2 motifs. The structure reveals how the PAM peptide forms key interactions simultaneously with two KR2 via the high-affinity lysine isosteres within the a1a2 motifs. Further studies, through combined mutagenesis and functional characterization, show that a2 is a stronger KR2 binder than a1, suggesting that these two motifs may play discrete roles in mediating the final PAM-Plg assembly.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Streptococcus pyogenes/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...